
University of California at Berkeley

More Deterministic Software for Cyber-Physical Systems

Edward A. Lee

Amsterdam, Sept. 14, 2020

Keynote, Workshop on Automated and
verifiable Software sYstem Development (ASYDE)

Lingua Franca Design Team:
Marten Lohstroh, Berkeley
Christian Menard, TU Dresden
Soroush Bateni, UT Dallas
Matt Weber, Berkeley
Alexander Schulz-Rosengarten, Kiel
Shaokai Lin, Berkeley
Edward Lee, Berkeley

Cyber-Physical Systems

2

The major challenge: Integrating complex subsystems with
adequate reliability, repeatability, and testability.

Simple Challenge Problem

An actor or service that
can receive either of
two messages:
1. “open”
2. “disarm”
Assume state is closed
and armed.
What should it do when
it receives a message
“open”?

3

By Christopher Doyle from
Horley, United Kingdom -
A321 Exit Door, CC BY-SA 2.0

Simple Challenge Problem

An actor or service that
can receive either of
two messages:
1. “open”
2. “disarm”
Assume state is closed
and armed.
What should it do when
it receives a message
“open”?

4Image from The Telegraph, Sept. 9, 2015

Possible Architectures

5

Embedded
Vision System

Cockpit
Control

Fire Detection
System

Door Control

N
et

w
or

k

disarm

disarmdisarm
open

open

open

The question: What to do
upon receiving “open”?

• Pub/Sub (e.g. ROS, MQTT, Azure, Google Cloud)
• Message passing (e.g. Akka, Erlang, Ray, UML-RT)
• Service-oriented architecture (e.g. gRPC, Thrift, …)
• Shared memory (e.g. Linda)

Some Solutions (?)

1. Just open the door.
How much to test? How much formal verification? How to
constrain the design of other components? The network?

2. Send a message “ok_to_open?” Wait for responses.
How many responses? How long to wait? What if a
component has failed and never responds?

3. Wait a while and then open.
How long to wait?

6
Better go read all of

Lamport’s papers.

Fix with formal verification?

One possibility is to formally analyze the system.
Properties to verify:

1. If Door receives “open,” it will eventually open the door,
even if all other components fail.

2. If any component sends “disarm” before any other
component sends “open,” then the door will be disarmed
before it is opened.

Do these make sense?

7

Fix with formal verification?

One possibility is to formally analyze the system.
Properties to verify:

1. If Door receives “open,” it will eventually open the door,
even if all other components fail.

2. If any component sends “disarm” before any other
component sends “open,” then the door will be disarmed
before it is opened.

Can these be satisfied?

8

Makes a distributed-
consensus solution

challenging.

Requires comparing times of events on distributed
platforms without specifying a model of time. In physics,
the order of separated events depends on the observer.

Popular Techniques
• Publish and Subscribe
– ROS, MQTT, DDS, Azure, Google Cloud

• Actors
– Akka, Erlang, Ray, Orleans, Rebeca, Scala, UML-RT, …

• Service-oriented architecture
– gRPC, Bond, Thrift, …

• Shared memory
– Linda, pSpaces, …

9

Hewitt/Agha Actors

10

Data + Message Handlers

Private Data

Message
QueueMessages In Messages Out

Handler B

Handler A

X

X.A(args)

X.B(args)

X.A(args)

Y.C(args)

Y.D(args)

[Hewitt, 1977] [Agha, 1986, 1990, 1997]

Example with
Two Actors

11

11

Assume TCP socket
communication; then it is safe
for the handler to open the door.

Actor Source {
handler main(){

x = new Door();
x.disarm_door();
x.open_door();

}
}

Actor Door {
handler open_door(){

…
}
handler disarm_door(){

…
}

}

Example with
Three Actors

12

12

Actor Source {
handler main(){

x = new Door();
p = new PassDisarm();
p.pass();
x.open_door();

}
}

Actor PassDisarm {
handler pass(Door x){

x.disarm_door();
}

}

Now, no reasonable assumptions
about the network are sufficient
for it to be safe for the handler
to open the door.

Actor Door {
handler open_door(){

…
}
handler disarm_door(){

…
}

}

Possible Solutions

1. Ignore the problem
2. Model timing
3. Change the model of computation:
– Dataflow (DF)
– Kahn Process Networks (KPN)
– Synchronous/Reactive (SR)
– Discrete Events (DE)

13[Lohstroh and Lee, “Deterministic Actors,” Forum on Design Languages (FDL), 2019]

DE Solution

14

Embedded
Vision System

Cockpit
Control

Fire Detection
System

Door Control

N
et

w
or

k

disarm

disarmdisarm
open

open

open

t1

t2

Correct
behavior is now
defined:
Process events
in timestamp
order.

Discrete Events (DE)

15

• Events that are processed in timestamp order.
• Widely used in simulation
• Foundation of hardware description languages.
• A deterministic concurrent MoC.
• But how to realize on distributed machines?

Example: Google Spanner
A Globally Distributed Database

16

Distributed database with redundant storage
and query handling across data centers.

Update to a record
comes in. Time stamp t.

Query for the same record
comes in. Time stamp r.

Example: Google Spanner
A Globally Distributed Database

Semantics of the
database is that it
handles queries in
timestamp order.

17

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]

t r

One Possible Approach:
Chandy and Misra [1979]

18

• Assume events
arrive reliably in
timestamp order.

• Wait for events on
each input.

• Process the event
with the smaller
timestamp.

• E.g. r1 < t1

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

r1

t1t2

r2
…

…

One Possible Approach:
Chandy and Misra [1979]

19

• Deterministic
• Network traffic for

“null messages.”
• Every node is a single

point of failure. query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

r1

t1t2

r2
…

…

Another Possible Approach:
Jefferson: Time Warp [1985]

• Speculatively
execute.

• If a message with an
earlier timestamp
later arrives…

20

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t r

Another Possible Approach:
Jefferson: Time Warp [1985]

• Speculatively
execute.

• If a message with an
earlier timestamp
later arrives…

• Backtrack!

21

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t

r

Another Possible Approach:
Jefferson: Time Warp [1985]

• No single point of failure.
• Can process events

without network traffic
• Can’t backtrack side

effects.
• Overhead: Snapshots
• Uncontrollable latencies.

22

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t

r

A Third Possible Approach:
High Level Architecture (HLA)

23

• Next message
request (NMR) with r

• Next message
request (NMR) with t

• If r < t , then time
advance grant (TAG)
of q ≤ r

• If q = r, process
event

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t r

Run Time Infrastructure (RTI)

NMR(r)NMR(t) TAG(q)

A Third Possible Approach:
High Level Architecture (HLA)

24

• Deterministic.
• RTI is a single point

of failure.
• Works well for

simulation, but not
for online
processing.

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t

r

Run Time Infrastructure (RTI)

NER(r)NER(t) TAG(q)

Ptides/Spanner Approach

• Local clock on each platform.
• t and r from local clocks.
• Bounded execution time W.
• Bounded network latency L.
• Event is known at B by time

t +W+L (by clock at A).
• Bounded clock

synchronization error E.
• Event is known at B by time

t +W+L+E (by clock at B).

25

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t r

W

L

E
• Event with timestamp r is safe to process at time

r +W+L+E (by clock at B).

Ptides/Spanner Approach

• No single point of failure.
• Can process events with

no network traffic.
• Latencies are well

defined.
• Time thresholds

computed statically.
• Assumptions are clearly

stated.

26

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

[Zhao, Liu, and Lee, “A Programming Model for Time-Synchronized Distributed Real-Time Systems,” RTAS, 2007]
[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]

r

Ptides

This model was introduced in 2007 with
applications to cyber-physical systems:

27

http://ptolemy.org/projects/chess/ptides

http://ptolemy.org/projects/chess/ptides

At What Cost
Determinism?

• Synchronized clocks
– These are becoming ubiquitous

• Bounded network latency
– Violations are faults. They are detectable.

• Bounded execution times
– Only needed in particular places.
– Solvable with PRET machines

(another talk).

28

What can be verified with the
PTIDES/Spanner approach?

1. If Door receives “open,” it will eventually open the door
in bounded time, even if all other components fail.

2. If any component sends “disarm” with timestamp less
than any other component’s “open,” then the door will
be disarmed before it is opened (assuming bounded
latency and bounded clock synchronization error).

The first is stronger, the second weaker.
And these properties are satisfied for any program complexity.

29
[Zhao et al., “A Programming Model for Time-Synchronized
Distributed Real-Time Systems,” RTAS 2007]

Today:

30

A polyglot meta-
language for
deterministic,
concurrent,
time-sensitive
systems.

https://github.com/icyphy/lingua-franca/wiki

Application Sketch

31

Reactors

32

reactor ComputationA {
input x:type;
output y:type;
state s:type(initialValue);
reaction(x) -> y {=

Target-language code
referencing x, y, and s.

=}
}

Timestamped inputs

Logically instantaneous outputs

Local state

Reaction signature gives
trigger(s) and production

Application logic given in a target
language (C, C++, TypeScript, Python, …)

Principle

Use a MoC where:
1. Designing software that satisfies the

properties of interest is easy.
2. The implementation of the MoC (the framework) is verifiably

correct under reasonable, clearly stated assumptions.
The hard part is 2, where it should be, since that is done once for
many applications.
"Keep the hard stuff out of the application logic”

33

Determinism

34

reactor Add {
input in1:int;
input in2:int;
output out:int;
reaction(in1, in2) -> out {=

int result = 0;
if (in1_is_present) {

result += in1;
}
if (in2_is_present) {

result += in2;
}
set(out, result);

=}
}

Whether the two triggers are
present simultaneously depends
only on their timestamps, not
on when they are received nor
on where in the network they
are sent from.

Periodic Behavior

35

reactor SensorA {
output y:int;
timer t(1 msec, 100 usec);
reaction(t) -> y {=

Poll the sensor in
the target language
and write value to y.

=}
}

Time as a first-class
data type.

In our C target, timestamps are 64-bit integers
representing the number of nanoseconds since Jan. 1,
1970 (if the platform has a clock) or the number of
nanoseconds since starting (if not).

Event-Triggered Behavior

36

reactor SensorB {
output y:int;
physical action a:int;
timer start;
reaction(startup) -> a {=

Set up an interrupt service
routine that will call:
schedule(a, 0, value);

=}
reaction(a) -> y {=

set(y, a_value);
=}

}

Timestamp will be
derived from the
local physical clock.

ISR executes
asynchronously, and
schedule() function is
thread safe.

Deadlines

37

reactor ActuatorA {
input in:int;
reaction(in) {=

perform actuation.
=} deadline 10 msec {=

handle deadline violation.
=}

}

Deadline is violated if the input d.x triggers more than 10
msec (in physical time) after the timestamp of the input.

Status

Still early, but evolving rapidly.
• Eclipse/Xtext-based IDE
• C, C++, Python, and TypeScript targets
• Code runs on Mac, Linux, Windows, and bare iron
• EDF scheduling on multicore.
• Command-line compiler
• Regression test suite
• Wiki documentation

38
https://github.com/icyphy/lingua-franca

Performance

Behaviors of the C target in the
regression tests running on a 2.6 GHz
Intel Core i7 running MacOS:
• Up to 28 million reactions per second (36 ns per).
• Near linear speedup is possible on multicore.
• Code size is tens of kilobytes.

39

Conclusions

• Lingua Franca programs are testable
(timestamped inputs -> timestamped outputs)

• LF programs are deterministic under
clearly stated assumptions.

• Violations of assumptions are detectable
at run time.

• Actors, Pub/Sub, SoA, and shared memory
have none of these properties.

42
https://github.com/icyphy/lingua-franca/wiki

