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Cyber-Physical Systems
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The major challenge: Integrating complex subsystems with 
adequate reliability, repeatability, and testability.



Simple Challenge Problem

An actor or service that 
can receive either of 
two messages:
1. “open”
2. “disarm”
Assume state is closed 
and armed.
What should it do when 
it receives a message 
“open”?
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Simple Challenge Problem

An actor or service that 
can receive either of 
two messages:
1. “open”
2. “disarm”
Assume state is closed 
and armed.
What should it do when 
it receives a message 
“open”?

4Image from The Telegraph, Sept. 9, 2015



Possible Architectures
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The question: What to do 
upon receiving “open”?

• Pub/Sub (e.g. ROS, MQTT, Azure, Google Cloud)
• Message passing (e.g. Akka, Erlang, Ray, UML-RT)
• Service-oriented architecture (e.g. gRPC, Thrift, …)
• Shared memory (e.g. Linda)



Some Solutions (?)

1. Just open the door.
How much to test?  How much formal verification? How to 
constrain the design of other components? The network?

2. Send a message “ok_to_open?” Wait for responses.
How many responses? How long to wait? What if a 
component has failed and never responds?

3. Wait a while and then open.
How long to wait?

6
Better go read all of 

Lamport’s papers.



Fix with formal verification?

One possibility is to formally analyze the system. 
Properties to verify:

1. If Door receives “open,” it will eventually open the door, 
even if all other components fail.

2. If any component sends “disarm” before any other 
component sends “open,” then the door will be disarmed 
before it is opened.

Do these make sense?
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Fix with formal verification?

One possibility is to formally analyze the system. 
Properties to verify:

1. If Door receives “open,” it will eventually open the door, 
even if all other components fail.

2. If any component sends “disarm” before any other 
component sends “open,” then the door will be disarmed 
before it is opened.

Can these be satisfied?
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Makes a distributed-
consensus solution 

challenging.

Requires comparing times of events on distributed 
platforms without specifying a model of time. In physics, 
the order of separated events depends on the observer.



Popular Techniques
• Publish and Subscribe
– ROS, MQTT, DDS, Azure, Google Cloud

• Actors
– Akka, Erlang, Ray, Orleans, Rebeca, Scala, UML-RT, …

• Service-oriented architecture
– gRPC, Bond, Thrift, …

• Shared memory
– Linda, pSpaces, …
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Hewitt/Agha Actors
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Data + Message Handlers

Private Data

Message 
QueueMessages In Messages Out

Handler B

Handler A

X

X.A(args)

X.B(args)

X.A(args)

Y.C(args)

Y.D(args)

[Hewitt, 1977] [Agha, 1986, 1990, 1997]



Example with 
Two Actors
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Assume TCP socket 
communication; then it is safe 
for the handler to open the door.

Actor Source {
handler main(){

x = new Door();
x.disarm_door();
x.open_door();

}
}

Actor Door {
handler open_door(){

…
}
handler disarm_door(){

…
}

}



Example with 
Three Actors
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Actor Source {
handler main(){

x = new Door();
p = new PassDisarm();
p.pass();
x.open_door();

}
}

Actor PassDisarm {
handler pass(Door x){

x.disarm_door();
}

}

Now, no reasonable assumptions 
about the network are sufficient 
for it to be safe for the handler 
to open the door.

Actor Door {
handler open_door(){

…
}
handler disarm_door(){

…
}

}



Possible Solutions

1. Ignore the problem
2. Model timing 
3. Change the model of computation:
– Dataflow (DF)
– Kahn Process Networks (KPN)
– Synchronous/Reactive (SR)
– Discrete Events (DE)

13[Lohstroh and Lee, “Deterministic Actors,” Forum on Design Languages (FDL), 2019]



DE Solution
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Correct 
behavior is now 
defined: 
Process events 
in timestamp 
order.



Discrete Events (DE)
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• Events that are processed in timestamp order.
• Widely used in simulation
• Foundation of hardware description languages.
• A deterministic concurrent MoC.
• But how to realize on distributed machines?



Example: Google Spanner
A Globally Distributed Database
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Distributed database with redundant storage 
and query handling across data centers.

Update to a record 
comes in. Time stamp t.

Query for the same record 
comes in. Time stamp r.



Example: Google Spanner
A Globally Distributed Database

Semantics of the 
database is that it 
handles queries in 
timestamp order.
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[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]
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One Possible Approach:
Chandy and Misra [1979]
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• Assume events 
arrive reliably in 
timestamp order.

• Wait for events on 
each input.

• Process the event 
with the smaller 
timestamp.

• E.g. r1 < t1
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One Possible Approach:
Chandy and Misra [1979]

19

• Deterministic
• Network traffic for 

“null messages.”
• Every node is a single 

point of failure. query
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Another Possible Approach:
Jefferson: Time Warp [1985]

• Speculatively 
execute.

• If a message with an 
earlier timestamp 
later arrives…
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Another Possible Approach:
Jefferson: Time Warp [1985]

• Speculatively 
execute.

• If a message with an 
earlier timestamp 
later arrives…

• Backtrack!
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Another Possible Approach:
Jefferson: Time Warp [1985]

• No single point of failure.
• Can process events 

without network traffic 
• Can’t backtrack side 

effects.
• Overhead: Snapshots
• Uncontrollable latencies.
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A Third Possible Approach:
High Level Architecture (HLA)

23

• Next message 
request (NMR) with r

• Next message 
request (NMR) with t

• If r < t , then time 
advance grant (TAG) 
of q ≤ r

• If q = r, process 
event
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A Third Possible Approach:
High Level Architecture (HLA)
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• Deterministic.
• RTI is a single point 

of failure.
• Works well for 

simulation, but not 
for online 
processing.
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Ptides/Spanner Approach

• Local clock on each platform.
• t and r from local clocks.
• Bounded execution time W.
• Bounded network latency L.
• Event is known at B by time 

t +W+L (by clock at A).
• Bounded clock 

synchronization error E.
• Event is known at B by time 

t +W+L+E (by clock at B).
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r +W+L+E (by clock at B).



Ptides/Spanner Approach

• No single point of failure.
• Can process events with 

no network traffic.
• Latencies are well 

defined.
• Time thresholds 

computed statically.
• Assumptions are clearly 

stated.
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[Zhao, Liu, and Lee, “A Programming Model for Time-Synchronized Distributed Real-Time Systems,” RTAS, 2007]
[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]
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Ptides

This model was introduced in 2007 with 
applications to cyber-physical systems:
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http://ptolemy.org/projects/chess/ptides

http://ptolemy.org/projects/chess/ptides


At What Cost 
Determinism?

• Synchronized clocks
– These are becoming ubiquitous

• Bounded network latency
– Violations are faults. They are detectable.

• Bounded execution times
– Only needed in particular places.
– Solvable with PRET machines 

(another talk).

28



What can be verified with the 
PTIDES/Spanner approach?

1. If Door receives “open,” it will eventually open the door 
in bounded time, even if all other components fail.

2. If any component sends “disarm” with timestamp less 
than any other component’s “open,” then the door will 
be disarmed before it is opened (assuming bounded 
latency and bounded clock synchronization error).

The first is stronger, the second weaker. 
And these properties are satisfied for any program complexity.

29
[Zhao et al., “A Programming Model for Time-Synchronized 
Distributed Real-Time Systems,” RTAS 2007]



Today:
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A polyglot meta-
language for 
deterministic, 
concurrent, 
time-sensitive 
systems.

https://github.com/icyphy/lingua-franca/wiki



Application Sketch
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Reactors
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reactor ComputationA {
input x:type;
output y:type;
state s:type(initialValue);
reaction(x) -> y {=

Target-language code
referencing x, y, and s.

=}
}

Timestamped inputs

Logically instantaneous outputs

Local state

Reaction signature gives 
trigger(s) and production

Application logic given in a target 
language (C, C++, TypeScript, Python, …)



Principle

Use a MoC where:
1. Designing software that satisfies the 

properties of interest is easy.
2. The implementation of the MoC (the framework) is verifiably 

correct under reasonable, clearly stated assumptions.
The hard part is 2, where it should be, since that is done once for 
many applications.
"Keep the hard stuff out of the application logic”
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Determinism
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reactor Add {
input in1:int;
input in2:int;
output out:int;
reaction(in1, in2) -> out {=

int result = 0;
if (in1_is_present) {

result += in1;
}
if (in2_is_present) {

result += in2;
}
set(out, result);

=}
}

Whether the two triggers are 
present simultaneously depends 
only on their timestamps, not 
on when they are received nor 
on where in the network they 
are sent from.



Periodic Behavior
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reactor SensorA {
output y:int;
timer t(1 msec, 100 usec);
reaction(t) -> y {=

Poll the sensor in
the target language
and write value to y.

=}
}

Time as a first-class 
data type.

In our C target, timestamps are 64-bit integers 
representing the number of nanoseconds since Jan. 1, 
1970 (if the platform has a clock) or the number of 
nanoseconds since starting (if not).



Event-Triggered Behavior
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reactor SensorB {
output y:int;
physical action a:int;
timer start;
reaction(startup) -> a {=

Set up an interrupt service
routine that will call:
schedule(a, 0, value);

=}
reaction(a) -> y {=

set(y, a_value);
=}

}

Timestamp will be 
derived from the 
local physical clock.

ISR executes 
asynchronously, and 
schedule() function is 
thread safe.



Deadlines

37

reactor ActuatorA {
input in:int;
reaction(in) {=

perform actuation.
=} deadline 10 msec {=

handle deadline violation.
=}

}

Deadline is violated if the input d.x triggers more than 10 
msec (in physical time) after the timestamp of the input.



Status

Still early, but evolving rapidly.
• Eclipse/Xtext-based IDE
• C, C++, Python, and TypeScript targets
• Code runs on Mac, Linux, Windows, and bare iron
• EDF scheduling on multicore.
• Command-line compiler
• Regression test suite
• Wiki documentation

38
https://github.com/icyphy/lingua-franca



Performance

Behaviors of the C target in the 
regression tests running on a 2.6 GHz 
Intel Core i7 running MacOS:
• Up to 28 million reactions per second (36 ns per).
• Near linear speedup is possible on multicore.
• Code size is tens of kilobytes.
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Conclusions

• Lingua Franca programs are testable
(timestamped inputs -> timestamped outputs)

• LF programs are deterministic under 
clearly stated assumptions.

• Violations of assumptions are detectable
at run time.

• Actors, Pub/Sub, SoA, and shared memory 
have none of these properties.

42
https://github.com/icyphy/lingua-franca/wiki


