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Goal

Determine Isolation guarantees
of different implementation strategies

Approach

- model checker (TLC) automatically

. icolgtion model _> determine Isolation

(Crooks’ Isolation) of implementation



Transaction Isolation

Serializability: Order of operations in transactions occur in
serial order

Moo Mo
IER ¥ 13

Snapshot Isolation: Reads from consistent snapshot of
database & no conflicting writes




Crooks' Isolation (Cl):
State-Based Client-Centric Isolation Model

Database state reads and writes Conforms to
observed by client model?

Declarative logical view on Isolation guarantees

Commit Tests for Isolation levels based on states and
observed operations

Defines if observed transactions could have been
executed under Isolation level

Natacha Crooks, Youer Pu, Lorenzo Alvisi, Allen Clement: Seeing is Believing: A Client-Centric Specification of Database Isolation. PODC 2017



Transaction Example

-2 bank accounts: Current & Saving with €30 balance

- Invariant: Sum of balances = €0

- 2 concurrent transactions:

- Alice withdraws €40 from Current account
- Bob withdraws €40 from Savings account

- Note: 1 transaction is allowed without violating invariant



Observed Transactions

- Operation:  reads and writes of keys and values

- Transaction: sequence of Operations

- State: mapping from all keys to value

- Execution: States + Transactions

T .= (r(C,30),r(S,30), w(C,-10))
T, = (r(C,-10), r(S,30), abort)
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Cl Serializability

Does an execution exist T = (r(C.30), r(S5.30), w(C,-10))

where all transactions read
.0 T, = (r(C,-10), r(S,30), abort
from their direct parent state? " (€. -10), 7(.30), abort)

s1 ¥\ Sa ¥\ Ss

(T, T,) C — 30 Tutie C — —10 Thor C— —10
alice> “bob /1§ 3 30 S — 39\/ S — 30

C' 30\ Tig [C > 30\ Tuwe [ C— 30
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Cl Serializability

Does an execution exist T... = (r(C.30), (S.30), w(C, -10))

where all transactions read
.0 T, = (r(C,-10), r(S,30), abort
from their direct parent state? " (€. -10), 7(.30), abort)

s1 ¥\ Sa W\ Ss

(T, T,) C — 30 Tutie C — —10 Thor C — —10
alice> “bob /71§ 5 3() S — 3&/ S — 30

Single valid execution is enough:
observed transactions are valid in a serial schedule
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TLA+ and PlusCal

- TLA+: Action-based modeling of programs

- States and transitions

- Invariants on states — checkable by model checker TLC
- PlusCal: Models concurrent and distributed algorithms

- Compiles to TLA+

- (Interleaving) Processes and actions in “imperative style”

- TLA+ Invariants on states
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Formalization of Cl in TLA+

- Formalization Process

- Relatively straight forward, except choosing correct TLA+ base abstractions
for Cl, influencing whole formalization

- Trade-off: Traceability vs Closeness to model

- Improved definitions for incremental model checking with empty
transactions

- Limitations

- State space explosion — model check time increases rapidly

- Small scope hypothesis — bugs have small counter examples
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Isolation levels as TLA+ properties:
Serializability(initialState, setOfTransactions)

Check with TLC

“Unit test™: Model check single initialState and set
of transactions — possibly from runtime trace

Algorithm check: Check property on each model step
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"“Unit test” Exa
5, 5% s, War

S1 n 1 So S3
C—30|7,.1|C——-10)| 1,., | C — —10 C—30|7,.1C——-10] 1., | C— —1C
{SHSO 4{SH 30 _@{SH 39} {SHSG 4{SH 30 4{SH—M}

Y/
@
\x Initial

—> state of Current and Savings accounts.

bankInit = (C :> 30) (S :> 30)

talice == << £5,30), LLL.30), w(C,-10) >>
thob = << r(5,30), C{C.210)

(*x w(S,-10) does not happen *) >>

bankTrx == {talice, tbob}

ASS
ASS
ASS
ASS

UME Serializability(bankInit, bankTrx)
UME SnapshotIsolation(bankInit, bankTrx)
UME ReadCommitted(bankInit, bankTrx)

UME ReadUncommitted(bankInit, bankTrx)

Serializability

tbAlice = << (S, 30), r(C,30), w(C,-10) >>
tbBob ==<<r(S, 30), r(C,30), w(S,-10) >>

bBankTrx == {tbAlice, tbBob}

ASSUME Serializability

> (bankInit, bBankTrx) == FALSE
ASSUME SnapshotIsolation(bankInit, bBankTrx)
ASSUME ReadCommitted(bankInit, bBankTrx)
ASSUME ReadUncommitted(bankInit, bBankTrx)

Snapshot Isolation
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Checking Isolation of Algorithms

- Model Algorithm in PlusCal or TLA+

- Check isolation properties in each state of model:
Serializability(InitialState, ccTransactions)

- Track ccTransactions in algorithm steps
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2-Phase Locking & 2 Phase Commit

- 2PL: Serializable Isolation by locking data resources

- 2PC: Atomicity by resources first voting, then only
committing if all agree

- Modeled in PlusCal by 2 processes with shared-channel
message passing: Transaction Manager and Resource
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Bug Seeding
Can this approach actually find Isolation violations?

Specification bug where Transaction Resource is locked by a transaction,
but unlocks when another aborts

TLC finds non-serializable counter example in seconds:
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Reads/Writes do not capture Serializability of
semantically higher-level operations, such as used in
Rebel

e.g. 2 interleaving deposits are Serializable

Improve formalization to leverage higher-level
operations: Multi-level transactions with commmutativity
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Validating Isolation with TLA+

Tim Soethout (tim.soethout@ing.com), Tijs van der Storm, Jurgen Vinju

- Trade-off between Performance and Isolation

- Need to quality isolation level of different implementations

- Model Checking can check conformance of run-time traces
and specifications of algorithms

- Enables rapid experimentation with efficient
synchronization strategies, without overlooking isolation
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