
Automated Validation of State-Based
Client-Centric Isolation with TLA+
Tim Soethout (tim.soethout@ing.com), Tijs van der Storm, Jurgen Vinju ASYDE’20, 15 September 2020

mailto:tim.soethout@ing.com
mailto:tim.soethout@ing.com

Trade-off: Isolation vs Performance

2

Strong Isolation

Lower Latency
Higher Throughput
Weaker Consistency

Higher Latency
Lower Throughput
Lower Performance

High Performance

Serializability Eventual
Consistency

Snapshot Isolation

MVCC

Context: Different Implementations
with different guarantees

3

Strong Consistency High Performance

Application Specification

Implementation Approach A Implementation Approach B

Context: Different Generators
with different guarantees

4

Strong Consistency High Performance

Application Models

Code Generator A Code Generator B

Context: Different generators for Rebel
with different guarantees

5

Strong Consistency High Performance

Specifications

Code Generator
2-Phase Locking/
2-Phase Commit

Code Generator
Local Coordination Avoidance

Goal
Determine Isolation guarantees

of different implementation strategies

6

Approach
• model checker (TLC)
• isolation model

(Crooks’ Isolation)

automatically
determine Isolation
of implementation

Serializability: Order of operations in transactions occur in
serial order

7

{} {}
T1 T2 T3

}{

Transaction Isolation

Snapshot Isolation: Reads from consistent snapshot of
database & no conflicting writes

Crooks’ Isolation (CI):
State-Based Client-Centric Isolation Model

8Natacha Crooks, Youer Pu, Lorenzo Alvisi, Allen Clement: Seeing is Believing: A Client-Centric Specification of Database Isolation. PODC 2017

Database state reads and writes
observed by client

Conforms to
model?

• Declarative logical view on Isolation guarantees

• Commit Tests for Isolation levels based on states and
observed operations

• Defines if observed transactions could have been
executed under Isolation level

Transaction Example
• 2 bank accounts: Current & Saving with €30 balance

• Invariant: Sum of balances ⩾ €0

• 2 concurrent transactions:

• Alice withdraws €40 from Current account

• Bob withdraws €40 from Savings account

• Note: 1 transaction is allowed without violating invariant
9

Observed Transactions
• Operation: reads and writes of keys and values
• Transaction: sequence of Operations
• State: mapping from all keys to value
• Execution: States + Transactions

10

Talice = ⟨r(C,30), r(S,30), w(C, -10)⟩
Tbob = ⟨r(C, -10), r(S,30), abort⟩

Automated Validation of State-Based Client-Centric Isolation with tla+ 7

Listing 2. tla+ helper definitions for ci.
WriteSet(transaction) == * WT ={k|w(k,v)2⌃T }
LET writes == { operation 2 SeqToSet(transaction) : operation.op = "write" }
IN { operation.key : operation 2 writes }

NoConf(execution, transaction, state) == * no-confT (s)⌘�(s,sp)\WT =;
LET Sp == parentState(execution, transaction)

delta == { key 2 DOMAIN Sp : Sp[key] 6= state[key] }
IN delta \ WriteSet(transaction) = {}

Preread(execution, transaction) == * prereade(T)⌘8o2⌃T :RSe(o) 6=;
8 operation 2 SeqToSet(transaction): ReadStates(execution, operation, transaction) 6= {}

strictBefore(t1, t2, timestamps) == timestamps[t1].commit < timestamps[t2].start * T1<sT2

beforeOrEqualInExecution(execution, state1, state2) == * s1
⇤!s2

LET states == executionStates(execution)
IN Index(states, state1) <= Index(states, state2)

both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i
and Tbob=hr(S,30),r(C,�10),aborti. A serializable implementation requires Tbob

to abort. Talice reads both balances of C and S and withdraws e40 from C. Tbob

reads the result and aborts because not enough balance is available for his withdraw
of 40 from S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! 30

�

The tla+ code to check this is shown on the right of Figure 3.
The same example can be considered under Snapshot Isolation. Consider

the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i andTbob=hr(S,30),r(C,30),w(S,�10)i.
Both Talice and Tbob read from S1 and find that there is enough total balance
available. They both withdraw 40 from respectively C and S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! �10

�

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the sum
of the balances should remain positive. This is known as the write skew isolation
anomaly [7]. This can be checked by using a specification similar to the right-hand
side of Figure 3, modifying the transactions, and assuming Serializability is FALSE.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

CI Serializability

11

Talice = ⟨r(C,30), r(S,30), w(C, -10)⟩
Tbob = ⟨r(C, -10), r(S,30), abort⟩

⟨Talice, Tbob⟩ :

Automated Validation of State-Based Client-Centric Isolation with tla+ 7

Listing 2. tla+ helper definitions for ci.
WriteSet(transaction) == * WT ={k|w(k,v)2⌃T }
LET writes == { operation 2 SeqToSet(transaction) : operation.op = "write" }
IN { operation.key : operation 2 writes }

NoConf(execution, transaction, state) == * no-confT (s)⌘�(s,sp)\WT =;
LET Sp == parentState(execution, transaction)

delta == { key 2 DOMAIN Sp : Sp[key] 6= state[key] }
IN delta \ WriteSet(transaction) = {}

Preread(execution, transaction) == * prereade(T)⌘8o2⌃T :RSe(o) 6=;
8 operation 2 SeqToSet(transaction): ReadStates(execution, operation, transaction) 6= {}

strictBefore(t1, t2, timestamps) == timestamps[t1].commit < timestamps[t2].start * T1<sT2

beforeOrEqualInExecution(execution, state1, state2) == * s1
⇤!s2

LET states == executionStates(execution)
IN Index(states, state1) <= Index(states, state2)

both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i
and Tbob=hr(S,30),r(C,�10),aborti. A serializable implementation requires Tbob

to abort. Talice reads both balances of C and S and withdraws e40 from C. Tbob

reads the result and aborts because not enough balance is available for his withdraw
of 40 from S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! 30

�

The tla+ code to check this is shown on the right of Figure 3.
The same example can be considered under Snapshot Isolation. Consider

the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i andTbob=hr(S,30),r(C,30),w(S,�10)i.
Both Talice and Tbob read from S1 and find that there is enough total balance
available. They both withdraw 40 from respectively C and S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! �10

�

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the sum
of the balances should remain positive. This is known as the write skew isolation
anomaly [7]. This can be checked by using a specification similar to the right-hand
side of Figure 3, modifying the transactions, and assuming Serializability is FALSE.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

⟨Tbob, Talice⟩ :

Automated Validation of State-Based Client-Centric Isolation with tla+ 7

Listing 2. tla+ helper definitions for ci.
WriteSet(transaction) == * WT ={k|w(k,v)2⌃T }
LET writes == { operation 2 SeqToSet(transaction) : operation.op = "write" }
IN { operation.key : operation 2 writes }

NoConf(execution, transaction, state) == * no-confT (s)⌘�(s,sp)\WT =;
LET Sp == parentState(execution, transaction)

delta == { key 2 DOMAIN Sp : Sp[key] 6= state[key] }
IN delta \ WriteSet(transaction) = {}

Preread(execution, transaction) == * prereade(T)⌘8o2⌃T :RSe(o) 6=;
8 operation 2 SeqToSet(transaction): ReadStates(execution, operation, transaction) 6= {}

strictBefore(t1, t2, timestamps) == timestamps[t1].commit < timestamps[t2].start * T1<sT2

beforeOrEqualInExecution(execution, state1, state2) == * s1
⇤!s2

LET states == executionStates(execution)
IN Index(states, state1) <= Index(states, state2)

both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i
and Tbob=hr(S,30),r(C,�10),aborti. A serializable implementation requires Tbob

to abort. Talice reads both balances of C and S and withdraws e40 from C. Tbob

reads the result and aborts because not enough balance is available for his withdraw
of 40 from S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! 30

�

S1⇢
C 7! 30
S 7! 30

�
Tbob�!

S2⇢
C 7! 30
S 7! �10

�
Talice�!

S3⇢
C 7! 30
S 7! �10

�

The tla+ code to check this is shown on the right of Figure 3.
The same example can be considered under Snapshot Isolation. Consider

the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i andTbob=hr(S,30),r(C,30),w(S,�10)i.
Both Talice and Tbob read from S1 and find that there is enough total balance
available. They both withdraw 40 from respectively C and S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! �10

�

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the sum
of the balances should remain positive. This is known as the write skew isolation
anomaly [7]. This can be checked by using a specification similar to the right-hand
side of Figure 3, modifying the transactions, and assuming Serializability is FALSE.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

?

Does an execution exist
where all transactions read

from their direct parent state?

CI Serializability

12

Talice = ⟨r(C,30), r(S,30), w(C, -10)⟩
Tbob = ⟨r(C, -10), r(S,30), abort⟩

⟨Talice, Tbob⟩ :

Automated Validation of State-Based Client-Centric Isolation with tla+ 7

Listing 2. tla+ helper definitions for ci.
WriteSet(transaction) == * WT ={k|w(k,v)2⌃T }
LET writes == { operation 2 SeqToSet(transaction) : operation.op = "write" }
IN { operation.key : operation 2 writes }

NoConf(execution, transaction, state) == * no-confT (s)⌘�(s,sp)\WT =;
LET Sp == parentState(execution, transaction)

delta == { key 2 DOMAIN Sp : Sp[key] 6= state[key] }
IN delta \ WriteSet(transaction) = {}

Preread(execution, transaction) == * prereade(T)⌘8o2⌃T :RSe(o) 6=;
8 operation 2 SeqToSet(transaction): ReadStates(execution, operation, transaction) 6= {}

strictBefore(t1, t2, timestamps) == timestamps[t1].commit < timestamps[t2].start * T1<sT2

beforeOrEqualInExecution(execution, state1, state2) == * s1
⇤!s2

LET states == executionStates(execution)
IN Index(states, state1) <= Index(states, state2)

both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i
and Tbob=hr(S,30),r(C,�10),aborti. A serializable implementation requires Tbob

to abort. Talice reads both balances of C and S and withdraws e40 from C. Tbob

reads the result and aborts because not enough balance is available for his withdraw
of 40 from S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! 30

�

The tla+ code to check this is shown on the right of Figure 3.
The same example can be considered under Snapshot Isolation. Consider

the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i andTbob=hr(S,30),r(C,30),w(S,�10)i.
Both Talice and Tbob read from S1 and find that there is enough total balance
available. They both withdraw 40 from respectively C and S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! �10

�

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the sum
of the balances should remain positive. This is known as the write skew isolation
anomaly [7]. This can be checked by using a specification similar to the right-hand
side of Figure 3, modifying the transactions, and assuming Serializability is FALSE.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

⟨Tbob, Talice⟩ :

Automated Validation of State-Based Client-Centric Isolation with tla+ 7

Listing 2. tla+ helper definitions for ci.
WriteSet(transaction) == * WT ={k|w(k,v)2⌃T }
LET writes == { operation 2 SeqToSet(transaction) : operation.op = "write" }
IN { operation.key : operation 2 writes }

NoConf(execution, transaction, state) == * no-confT (s)⌘�(s,sp)\WT =;
LET Sp == parentState(execution, transaction)

delta == { key 2 DOMAIN Sp : Sp[key] 6= state[key] }
IN delta \ WriteSet(transaction) = {}

Preread(execution, transaction) == * prereade(T)⌘8o2⌃T :RSe(o) 6=;
8 operation 2 SeqToSet(transaction): ReadStates(execution, operation, transaction) 6= {}

strictBefore(t1, t2, timestamps) == timestamps[t1].commit < timestamps[t2].start * T1<sT2

beforeOrEqualInExecution(execution, state1, state2) == * s1
⇤!s2

LET states == executionStates(execution)
IN Index(states, state1) <= Index(states, state2)

both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i
and Tbob=hr(S,30),r(C,�10),aborti. A serializable implementation requires Tbob

to abort. Talice reads both balances of C and S and withdraws e40 from C. Tbob

reads the result and aborts because not enough balance is available for his withdraw
of 40 from S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! 30

�

S1⇢
C 7! 30
S 7! 30

�
Tbob�!

S2⇢
C 7! 30
S 7! �10

�
Talice�!

S3⇢
C 7! 30
S 7! �10

�

The tla+ code to check this is shown on the right of Figure 3.
The same example can be considered under Snapshot Isolation. Consider

the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i andTbob=hr(S,30),r(C,30),w(S,�10)i.
Both Talice and Tbob read from S1 and find that there is enough total balance
available. They both withdraw 40 from respectively C and S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! �10

�

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the sum
of the balances should remain positive. This is known as the write skew isolation
anomaly [7]. This can be checked by using a specification similar to the right-hand
side of Figure 3, modifying the transactions, and assuming Serializability is FALSE.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

?

Does an execution exist
where all transactions read

from their direct parent state?

Single valid execution is enough:
observed transactions are valid in a serial schedule

TLA+ and PlusCal
• TLA+: Action-based modeling of programs

• States and transitions

• Invariants on states — checkable by model checker TLC

• PlusCal: Models concurrent and distributed algorithms

• Compiles to TLA+

• (Interleaving) Processes and actions in “imperative style”

• TLA+ invariants on states

13

Formalization of CI in TLA+
• Formalization Process

• Relatively straight forward, except choosing correct TLA+ base abstractions
for CI, influencing whole formalization

• Trade-off: Traceability vs Closeness to model

• Improved definitions for incremental model checking with empty
transactions

• Limitations

• State space explosion — model check time increases rapidly

• Small scope hypothesis — bugs have small counter examples

14

CI in TLA+
• Isolation levels as TLA+ properties:
Serializability(initialState, setOfTransactions)

• Check with TLC

• “Unit test”: Model check single initialState and set
of transactions — possibly from runtime trace

• Algorithm check: Check property on each model step

15

16

Automated Validation of State-Based Client-Centric Isolation with tla+ 7

s0 == [k 2 {x,y,z} 7! 0] * Initial State, all 0
* Helper functions to define reads and writes
r(k,v) == [op 7! "read", key 7! k, value 7! v]
w(k,v) == [op 7! "write", key 7! k, value 7! v]

ta == << w(x,1) >>
tb == << r(y,1), r(z,0) >>
tc == << w(y,1) >>
td == << w(y,2), w(z,1) >>
te == << r(x,0), r(z,1) >>

trs == {ta, tb, tc, td, te}
ASSUME Serializability(s0, trs) = TRUE
ASSUME SnapshotIsolation(s0, trs) = TRUE
ASSUME ReadCommitted(s0, trs) = TRUE
ASSUME ReadUncommitted(s0, trs) = TRUE

* Initial
,! state of Current and Savings accounts.

bankInit == (C :> 30) (S :> 30)

talice == << r(S,30), r(C, 30), w(C,-10) >>
tbob == << r(S,30), r(C,-10)

(* w(S,-10) does not happen *) >>
bankTrx == {talice, tbob}

ASSUME Serializability(bankInit, bankTrx)
ASSUME SnapshotIsolation(bankInit, bankTrx)
ASSUME ReadCommitted(bankInit, bankTrx)
ASSUME ReadUncommitted(bankInit, bankTrx)

Fig. 2. Running example (left) and serializable bank account example (right) from Crooks
et al. [12] in tla+.

available. They both withdraw 40 from respectively C and S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! �10

�

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the sum
of the balances should remain positive. This is known as the write skew isolation
anomaly [7]. This can be checked by using a specification similar to the right-hand
side of Figure 2, modifying the transactions, and assuming Serializability is FALSE.

5 Model Checking Algorithms Using ci

In contrast to the previous, static examples, where tla+’s state steps are not used,
we now look at a tla+ specification of a transactional protocol (2pl/2pc) using
states. At each step of the algorithm tlc checks if the isolation guarantees hold.

5.1 Formalizing 2pl/2pc

Two-Phase Commit (2pc) combined with Two-Phase Locking (2pl) forms a
protocol used to implement acid transactions. 2pc takes care of atomicity of a
transaction and 2pl provides Serializable isolation. We extend the formalization of
2pc by Gray and Lamport [15] to support multiple parallel transactions via 2pl.

We model 2pl/2pc in the PlusCal algorithm language, which is compiled
down to regular tla+, but provides a higher-level notation, closer to imperative

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Serializability Snapshot Isolation

6 Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Table 1. Commit tests and corresponding tla+ definitions.

Isolation Level Commit Test tla+ definition

Serializability completee,T (sp) Complete(e, T, parentState(e, T))

Snapshot Isolation 9s2Se.completee,T (sp)^
no-confT (s)

9 s 2 toSet(states(e)):
Complete(e, T, s) ^ NoConf(e, T, s)

Read Committed prereade(T) Preread(e ,T)
Read Uncommitted True TRUE

Strict Serializability completee,T (sp)^
8T 02T :T 0<sT)sT 0

⇤!sT

LET Sp == parentState(e, t)
IN Complete(e, T, Sp) ^

8 otherT 2 transactions(e):
strictBefore(otherT, T, timestamps))
beforeOrEqualInExecution(
e, parentState(e, otherT), Sp)

s0 == [k 2 {x,y,z} 7! 0] * Initial State, all 0
* Helper functions to define reads and writes
r(k,v) == [op 7! "read", key 7! k, value 7! v]
w(k,v) == [op 7! "write", key 7! k, value 7! v]

ta == << w(x,1) >>
tb == << r(y,1), r(z,0) >>
tc == << w(y,1) >>
td == << w(y,2), w(z,1) >>
te == << r(x,0), r(z,1) >>

trs == {ta, tb, tc, td, te}
ASSUME Serializability(s0, trs) = TRUE
ASSUME SnapshotIsolation(s0, trs) = TRUE
ASSUME ReadCommitted(s0, trs) = TRUE
ASSUME ReadUncommitted(s0, trs) = TRUE

* Initial state of Current and Savings accounts.
bankInit == (C :> 30) @@ (S :> 30)

talice == << r(S,30), r(C, 30), w(C,-10) >>
tbob == << r(S,30), r(C,-10)

(* w(S,-10) does not happen *) >>
bankTrx == {talice, tbob}

ASSUME Serializability(bankInit, bankTrx)
ASSUME SnapshotIsolation(bankInit, bankTrx)
ASSUME ReadCommitted(bankInit, bankTrx)
ASSUME ReadUncommitted(bankInit, bankTrx)

tbAlice == << r(S, 30), r(C,30), w(C,-10) >>
tbBob == << r(S, 30), r(C,30), w(S,-10) >>
bBankTrx == {tbAlice, tbBob}

ASSUME Serializability
,! (bankInit, bBankTrx) == FALSE

ASSUME SnapshotIsolation(bankInit, bBankTrx)
ASSUME ReadCommitted(bankInit, bBankTrx)
ASSUME ReadUncommitted(bankInit, bBankTrx)

Fig. 3. Running example (left) and serializable bank account example (right) from Crooks
et al. [12] in tla+.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Automated Validation of State-Based Client-Centric Isolation with tla+ 7

Listing 2. tla+ helper definitions for ci.
WriteSet(transaction) == * WT ={k|w(k,v)2⌃T }
LET writes == { operation 2 SeqToSet(transaction) : operation.op = "write" }
IN { operation.key : operation 2 writes }

NoConf(execution, transaction, state) == * no-confT (s)⌘�(s,sp)\WT =;
LET Sp == parentState(execution, transaction)

delta == { key 2 DOMAIN Sp : Sp[key] 6= state[key] }
IN delta \ WriteSet(transaction) = {}

Preread(execution, transaction) == * prereade(T)⌘8o2⌃T :RSe(o) 6=;
8 operation 2 SeqToSet(transaction): ReadStates(execution, operation, transaction) 6= {}

strictBefore(t1, t2, timestamps) == timestamps[t1].commit < timestamps[t2].start * T1<sT2

beforeOrEqualInExecution(execution, state1, state2) == * s1
⇤!s2

LET states == executionStates(execution)
IN Index(states, state1) <= Index(states, state2)

both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i
and Tbob=hr(S,30),r(C,�10),aborti. A serializable implementation requires Tbob

to abort. Talice reads both balances of C and S and withdraws e40 from C. Tbob

reads the result and aborts because not enough balance is available for his withdraw
of 40 from S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! 30

�

The tla+ code to check this is shown on the right of Figure 3.
The same example can be considered under Snapshot Isolation. Consider

the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i andTbob=hr(S,30),r(C,30),w(S,�10)i.
Both Talice and Tbob read from S1 and find that there is enough total balance
available. They both withdraw 40 from respectively C and S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! �10

�

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the sum
of the balances should remain positive. This is known as the write skew isolation
anomaly [7]. This can be checked by using a specification similar to the right-hand
side of Figure 3, modifying the transactions, and assuming Serializability is FALSE.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Automated Validation of State-Based Client-Centric Isolation with tla+ 7

Listing 2. tla+ helper definitions for ci.
WriteSet(transaction) == * WT ={k|w(k,v)2⌃T }
LET writes == { operation 2 SeqToSet(transaction) : operation.op = "write" }
IN { operation.key : operation 2 writes }

NoConf(execution, transaction, state) == * no-confT (s)⌘�(s,sp)\WT =;
LET Sp == parentState(execution, transaction)

delta == { key 2 DOMAIN Sp : Sp[key] 6= state[key] }
IN delta \ WriteSet(transaction) = {}

Preread(execution, transaction) == * prereade(T)⌘8o2⌃T :RSe(o) 6=;
8 operation 2 SeqToSet(transaction): ReadStates(execution, operation, transaction) 6= {}

strictBefore(t1, t2, timestamps) == timestamps[t1].commit < timestamps[t2].start * T1<sT2

beforeOrEqualInExecution(execution, state1, state2) == * s1
⇤!s2

LET states == executionStates(execution)
IN Index(states, state1) <= Index(states, state2)

both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i
and Tbob=hr(S,30),r(C,�10),aborti. A serializable implementation requires Tbob

to abort. Talice reads both balances of C and S and withdraws e40 from C. Tbob

reads the result and aborts because not enough balance is available for his withdraw
of 40 from S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! 30

�

The tla+ code to check this is shown on the right of Figure 3.
The same example can be considered under Snapshot Isolation. Consider

the transactionsTalice =hr(S,30),r(C,30),w(C,�10)i andTbob=hr(S,30),r(C,30),w(S,�10)i.
Both Talice and Tbob read from S1 and find that there is enough total balance
available. They both withdraw 40 from respectively C and S:

S1⇢
C 7! 30
S 7! 30

�
Talice�!

S2⇢
C 7! �10
S 7! 30

�
Tbob�!

S3⇢
C 7! �10
S 7! �10

�

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the sum
of the balances should remain positive. This is known as the write skew isolation
anomaly [7]. This can be checked by using a specification similar to the right-hand
side of Figure 3, modifying the transactions, and assuming Serializability is FALSE.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

“Unit test” Example

Checking Isolation of Algorithms

• Model Algorithm in PlusCal or TLA+

• Check isolation properties in each state of model:
Serializability(InitialState, ccTransactions)

• Track ccTransactions in algorithm steps

17

2-Phase Locking & 2 Phase Commit
• 2PL: Serializable Isolation by locking data resources

• 2PC: Atomicity by resources first voting, then only
committing if all agree

• Modeled in PlusCal by 2 processes with shared-channel
message passing: Transaction Manager and Resource

18

Bug Seeding
• Can this approach actually find Isolation violations?

• Specification bug where Transaction Resource is locked by a transaction,
but unlocks when another aborts

• TLC finds non-serializable counter example in seconds:

19

Automated Validation of State-Based Client-Centric Isolation with tla+ 11

Table 2. Run time durations of tlc on ci checks for different number of transactions
and resources n of 2pl/2pc. Results on MacBook Pro (13-inch, 2016) with 3.3GHz Intel
Core i7 with 4 worker threads and allocated 8GB ram on AdoptOpenJDK 14.0.1+7, on
tlc 2.15 without profiling and using symmetry sets for constants.

#tx n=1 n=2 n=3

1 7 s 9 s 19 s

2 8 s 21 s 5m 55 s

3 11 s 1m 53 s 3 h 21m 54 s

resource is in the ready state and waiting on a GlobalCommit or Global-
Abort message from the transaction manager, the resource should only wait
for these messages when it is the actual transaction it voted for. This is guaran-
teed by with tId 2 voted \ committed in Listing 4 Line 19. The bug is to replace
this with with tId 2 transactions \ committed. This means tId can represent an
uncommitted transaction as well.

When this model is checked with two transactions and resources, all of the
invariants hold and no problem is found. However, with three transactions and
two resources the Serializability invariant is violated and a counter example with
20 steps is found within half a minute; this trace shown in Figure 3. The example
shows that due to this bug it is possible for a resource to side-step an in progress
transaction, by responding to the GlobalCommit of a different transaction.

First t1 and t2 request to vote and r1 votes to commit for t1, then t2 aborts due
to timeout with GlobalAbort(t2). r1 then uses this abort to abort its waiting
on t1. This is possible because with tId 2 transactions \ committed allows r1 can
pick tId from the set transactions \ committed == t1,t2,t3 \ {} == t1,t2,t3. It
receives the GlobalAbort(t2), aborts and steps to receive the next transaction.
The model checker requires some more steps to find non-serializable behavior,
when the other transactions t1 and t3 commit and their effects are applied in
different order on r1 and r2, hence the system is not serializable.

t3

t2

r2

r1

t1 wait
V
R
(t1)

ready
VC(t1, r1)

wait

VR(t2)

abort
G
A
(t
2)

wait
V
R
(t
3)

readyVC(t3, r1)
ready

V
C
(t

1,
r2

)

commitGC(t1)

ready

V
C
(t3,

r2)

commit

G
C
(t

3)

V
C
(t2,

r1)

init initcommit

readyinit commitinit init

commit

init

init

init

commitabort

Fig. 3. Non-serializable trace found for bugged 2pl/2pc specification. Horizontal lines represent processes over
time with state changes. Arrows represent messages sent and received. Message labels are abbreviations of 2pc
messages: VoteRequest, VoteCommit, GlobalAbort and GlobalCommit.

Submitted to ASYDE’20, please do not distribute.
© 2020, Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

r1 is locked by t1

But unlocked by t2
Transactions applied in different order

Not Serializable
t1, t3 committed in different

order: Not Serializable

Current Work
• Reads/Writes do not capture Serializability of

semantically higher-level operations, such as used in
Rebel

• e.g. 2 interleaving deposits are Serializable

• Improve formalization to leverage higher-level
operations: Multi-level transactions with commutativity

20

Validating Isolation with TLA+

21

Tim Soethout (tim.soethout@ing.com), Tijs van der Storm, Jurgen Vinju

• Trade-off between Performance and Isolation

• Need to qualify isolation level of different implementations

• Model Checking can check conformance of run-time traces
and specifications of algorithms

• Enables rapid experimentation with efficient
synchronization strategies, without overlooking isolation

mailto:tim.soethout@ing.com
mailto:tim.soethout@ing.com

