Automated Validation of State-Based

Client-Centric Isolation with TLA+

Tim Soethout (tim.soethout@ing.com), Tijs van der Storm, Jurgen Vinju ASYDE'20, 15 September 2020

mailto:tim.soethout@ing.com
mailto:tim.soethout@ing.com

Trade-off: Isolation vs Performance

Fventual

Serializability

Consistency

Snapshot Isolation

Strongjlsolation High Perfrmance

Higher Latency Lower Latency
Lower Throughput Higher Throughput
Lower Performance Weaker Consistency

Context: Different Implementations
with different quarantees

Application Specitication

Implementation Approach A Implementation Approach B

Strong Consistency High Performance

Context: Different Generators
with different quarantees

Application Models

Code Generator A Code Generator B

Strong Consistency High Performance

Context: Different generators for Rebel
with different quarantees

I‘ebs Specifications

N

)
@pde Generator
Lo&al Coordination Avoidance

Code Generator
2-Phase Locking/
2-Phase Commit

N

Strong Consistency Performance

Goal

Determine Isolation guarantees
of different implementation strategies

Approach

- model checker (TLC) automatically

. icolgtion model _> determine Isolation

(Crooks’ Isolation) of implementation

Transaction Isolation

Serializability: Order of operations in transactions occur in
serial order

Moo Mo
IER ¥ 13

Snapshot Isolation: Reads from consistent snapshot of
database & no conflicting writes

Crooks' Isolation (Cl):
State-Based Client-Centric Isolation Model

Database state reads and writes Conforms to
observed by client model?

Declarative logical view on Isolation guarantees

Commit Tests for Isolation levels based on states and
observed operations

Defines if observed transactions could have been
executed under Isolation level

Natacha Crooks, Youer Pu, Lorenzo Alvisi, Allen Clement: Seeing is Believing: A Client-Centric Specification of Database Isolation. PODC 2017

Transaction Example

-2 bank accounts: Current & Saving with €30 balance

- Invariant: Sum of balances = €0

- 2 concurrent transactions:

- Alice withdraws €40 from Current account
- Bob withdraws €40 from Savings account

- Note: 1 transaction is allowed without violating invariant

Observed Transactions

- Operation: reads and writes of keys and values

- Transaction: sequence of Operations

- State: mapping from all keys to value

- Execution: States + Transactions

T .= (r(C,30),r(S,30), w(C,-10))
T, = (r(C,-10), r(S,30), abort)

10

Cl Serializability

Does an execution exist T = (r(C.30), r(S5.30), w(C,-10))

where all transactions read
.0 T, = (r(C,-10), r(S,30), abort
from their direct parent state? " (€. -10), 7(.30), abort)

s1 ¥\ Sa ¥\ Ss

(T, T,) C — 30 Tutie C — —10 Thor C— —10
alice> “bob /1§ 3 30 S — 39\/ S — 30

C' 30\ Tig [C > 30\ Tuwe [C— 30
<Tb0b’T“”“>'{S HBO} @{S H—IO} C>{s: : 10} x

S P, So S

11

Cl Serializability

Does an execution exist T... = (r(C.30), (S.30), w(C, -10))

where all transactions read
.0 T, = (r(C,-10), r(S,30), abort
from their direct parent state? " (€. -10), 7(.30), abort)

s1 ¥\ Sa W\ Ss

(T, T,) C — 30 Tutie C — —10 Thor C — —10
alice> “bob /71§ 5 3() S — 3&/ S — 30

Single valid execution is enough:
observed transactions are valid in a serial schedule

12

TLA+ and PlusCal

- TLA+: Action-based modeling of programs

- States and transitions

- Invariants on states — checkable by model checker TLC
- PlusCal: Models concurrent and distributed algorithms

- Compiles to TLA+

- (Interleaving) Processes and actions in “imperative style”

- TLA+ Invariants on states

15

Formalization of Cl in TLA+

- Formalization Process

- Relatively straight forward, except choosing correct TLA+ base abstractions
for Cl, influencing whole formalization

- Trade-off: Traceability vs Closeness to model

- Improved definitions for incremental model checking with empty
transactions

- Limitations

- State space explosion — model check time increases rapidly

- Small scope hypothesis — bugs have small counter examples

14

Isolation levels as TLA+ properties:
Serializability(initialState, setOfTransactions)

Check with TLC

“Unit test™: Model check single initialState and set
of transactions — possibly from runtime trace

Algorithm check: Check property on each model step

15

"“Unit test” Exa
5, 5% s, War

S1 n 1 So S3
C—30|7,.1|C——-10)| 1,., | C — —10 C—30|7,.1C——-10] 1., | C— —1C
{SHSO 4{SH 30 _@{SH 39} {SHSG 4{SH 30 4{SH—M}

Y/
@
\x Initial

—> state of Current and Savings accounts.

bankInit = (C :> 30) (S :> 30)

talice == << £5,30), LLL.30), w(C,-10) >>
thob = << r(5,30), C{C.210)

(*x w(S,-10) does not happen *) >>

bankTrx == {talice, tbob}

ASS
ASS
ASS
ASS

UME Serializability(bankInit, bankTrx)
UME SnapshotIsolation(bankInit, bankTrx)
UME ReadCommitted(bankInit, bankTrx)

UME ReadUncommitted(bankInit, bankTrx)

Serializability

tbAlice = << (S, 30), r(C,30), w(C,-10) >>
tbBob ==<<r(S, 30), r(C,30), w(S,-10) >>

bBankTrx == {tbAlice, tbBob}

ASSUME Serializability

> (bankInit, bBankTrx) == FALSE
ASSUME SnapshotIsolation(bankInit, bBankTrx)
ASSUME ReadCommitted(bankInit, bBankTrx)
ASSUME ReadUncommitted(bankInit, bBankTrx)

Snapshot Isolation

16

Checking Isolation of Algorithms

- Model Algorithm in PlusCal or TLA+

- Check isolation properties in each state of model:
Serializability(InitialState, ccTransactions)

- Track ccTransactions in algorithm steps

17

2-Phase Locking & 2 Phase Commit

- 2PL: Serializable Isolation by locking data resources

- 2PC: Atomicity by resources first voting, then only
committing if all agree

- Modeled in PlusCal by 2 processes with shared-channel
message passing: Transaction Manager and Resource

18

Bug Seeding
Can this approach actually find Isolation violations?

Specification bug where Transaction Resource is locked by a transaction,
but unlocks when another aborts

TLC finds non-serializable counter example in seconds:

tl

L

rlis locked by t1

ril

r2

t2

—init ‘e\{)vait com@fGrC(tl)
—init ready abort—ini ready—c{]\ Commit—ini; O‘reaay—commit
- VO < &
N v
PR 7 7 \,\>
—init - ready commit—i ; Oready
K?) (t
VR -'
2 1

—init —=walt4—abort

2
O
g

t3

B 4t1, t3 committed in different

—init

order: Not Serializable

But unlocked by t2

19

Reads/Writes do not capture Serializability of
semantically higher-level operations, such as used in
Rebel

e.g. 2 interleaving deposits are Serializable

Improve formalization to leverage higher-level
operations: Multi-level transactions with commmutativity

20

Validating Isolation with TLA+

Tim Soethout (tim.soethout@ing.com), Tijs van der Storm, Jurgen Vinju

- Trade-off between Performance and Isolation

- Need to quality isolation level of different implementations

- Model Checking can check conformance of run-time traces
and specifications of algorithms

- Enables rapid experimentation with efficient
synchronization strategies, without overlooking isolation

mailto:tim.soethout@ing.com
mailto:tim.soethout@ing.com

